skip to main content


Search for: All records

Creators/Authors contains: "Park, Junghyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ethylene is well known as the primary product of CO2reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C2oxygenates; however, the mechanisms for C2product selectivity are not well established. This work considers selectivity trends of Cu-P0.065, Cu-Sn0.03, and Cu2Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P0.065electrocatalysts (Cuδ+= 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm−2) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm−2) at the same current density. The primary CO2reduction product at Cu-Sn0.03(Cuδ+= 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm−2) while CO2reduction at Cu2Se (Cuδ+= 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm−2). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge (δ+) of Cu reaction sites.

     
    more » « less